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Abstract

Continual test-time adaptive object detection (CTTA-OD)
aims to online adapt a source pre-trained detector to ever-
changing environments during inference under continu-
ous domain shifts. Most existing CTTA-OD methods pri-
oritize effectiveness while overlooking computational effi-
ciency, which is crucial for resource-constrained scenarios.
In this paper, we propose an efficient CTTA-OD method
via pruning. Our motivation stems from the observation
that not all learned source features are beneficial; certain
domain-sensitive feature channels can adversely affect tar-
get domain performance. Inspired by this, we introduce a
sensitivity-guided channel pruning strategy that quantifies
each channel based on its sensitivity to domain discrepan-
cies at both image and instance levels. We apply weighted
sparsity regularization to selectively suppress and prune
these sensitive channels, focusing adaptation efforts on in-
variant ones. Additionally, we introduce a stochastic chan-
nel reactivation mechanism to restore pruned channels, en-
abling recovery of potentially useful features and mitigating
the risks of early pruning. Extensive experiments on three
benchmarks show that our method achieves superior adap-
tation performance while reducing computational overhead
by 12% in FLOPs compared to the recent SOTA method.

1. Introduction

Object detection [39, 40] is a fundamental task in computer
vision with numerous downstream applications. However,
in real-world scenarios such as autonomous driving [37]
or robotics [45, 46], various natural factors, such as ad-
verse weather conditions and lighting changes [14, 15], can
lead to substantial domain shifts between training and test-
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Figure 1. We consider continual test-time adaptive object detec-
tion, which adapts a source detector to changing environments
during inference. By focusing adaptation efforts on invariant
parts while pruning sensitive parts, we improve computational ef-
ficiency, which is crucial for resource-constrained scenarios like
autonomous driving or UAV.

ing data, resulting in significant performance degradation.
Moreover, due to the dynamic nature of real-world environ-
ments, the test data distribution is constantly changing and
inherently unpredictable, posing additional challenges. To
address this issue, continual test-time adaptation [41] has
been proposed, which aims to adapt a source pre-trained
model during inference to accommodate the evolving test
data, providing a promising solution to mitigate the domain
shift problem, as shown in Fig 1.

While existing continual test-time adaptive object de-
tection methods show impressive results [4, 31, 35], en-
hancing computational efficiency has been relatively under-
explored, despite its critical importance for resource-
constrained scenarios [1, 28, 36]. Current methods typi-
cally adapt all features learned from the source domain in-
discriminately during adaptation to the target domain. How-
ever, our exploratory experiments reveal that not all learned
source features are beneficial for target domain; in fact, cer-
tain source feature channels negatively affect the model’s
performance in the target domain.

In particular, we perform ablation on feature channels
of the source pre-trained model, observing the impact of



Figure 2. We analyze how removing certain feature channel
from the source model affects in-domain and cross-domain per-
formance. The source model is trained on the Cityscapes train-
ing set and evaluated in-domain on the Cityscapes validation set
and cross-domain on Cityscapes-C. Points on the positive x-axis
(or y-axis) indicate that removing certain channel improves cross-
domain (or in-domain) performance, while those on the nega-
tive x-axis (or y-axis) indicate a decrease in cross-domain (or in-
domain) performance when removed. The axis units denote the
performance change percentage relative to direct-test.

removing certain channel on both in-domain and cross-
domain performance. The results indicate that some fea-
ture channels in source model, marked as red points in Fig.
2, contribute positively to in-domain testing, where their re-
moval causes a drop in in-domain performance. Conversely,
these channels negatively impact cross-domain testing, as
removing them enhances cross-domain performance. This
observation reveals the an indiscriminate adaptation strat-
egy is inefficient, as allocating computational resources to
such domain-sensitive channels not only increases adapta-
tion difficulty but also reduces efficiency.

Inspired by the success of network pruning in remov-
ing ineffective subsets to improve efficiency, we explore the
potential of pruning similar “ineffective subsets”, namely
feature channels sensitive to domain shifts, while focus-
ing adaptation efforts on invariant ones to enhance adap-
tation efficiency. To this end, we introduce a sensitivity-
guided channel pruning that quantifies the weight of each
feature channel based on its sensitivity to domain discrepan-
cies. Specifically, we compute channel sensitivity weights
at both the image level and instance level by measuring
the discrepancy between target domain features and pre-
collected source domain statistics. Subsequently, we apply
a weighted sparsity regularization to the learnable parame-
ters, encouraging the pruning of channels with higher sen-
sitivity weights according to predefined threshold and ratio.
Moreover, to prevent the loss of potentially useful chan-
nels due to early pruning, we design a stochastic channel
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Figure 3. We perform continual online adaptation on Cityscapes
→ Cityscapes-C. The x-axis and y-axis denote the average test-
time mAP across all corruptions and the total FLOPs consump-
tion (including both forward and backward passes). Our method
achieves superior results with the least FLOPs consumption.

reactivation mechanism. This mechanism utilizes Bernoulli
sampling to randomly restore pruned channels, allowing the
model to reassess their utility. By jointly optimizing the
adaptation loss and the channel pruning loss, our method fo-
cuses on invariant features, thereby ensuring superior adap-
tation performance on the changing target domain while
significantly reducing computational overhead.

In summary, our contributions are listed as follows:
• We unveil a novel perspective for enhancing CTTA-OD

efficiency from the model structure viewpoint, inspired by
the observation that certain source sensitive feature chan-
nels negatively impact target domain performance.

• We propose a novel efficient CTTA-OD framework that
suppresses and prunes sensitive feature channels and se-
lectively adapts invariant ones, reducing adaptation diffi-
culty and enhancing computational efficiency.

• We propose a sensitivity-guided channel pruning strategy
that quantifies each channel’s sensitivity to domain dis-
crepancies at both image and instance levels, along with a
stochastic reactivation mechanism to prevent early prun-
ing of useful channels.
Extensive experiments on three benchmarks show that

our method achieves superior adaptation results while re-
ducing 12% FLOPs compared to the SOTA method, as
shown in Fig 3.

2. Related Work
Test-time Adaptive Object Detection (TTA-OD) [5, 7, 10,
23, 25, 27, 38, 43, 47] aims to adapt a source pre-trained
detector to an unlabeled target domain without access to the
original source data, addressing privacy concerns. To miti-
gate the absence of source data, most TTA-OD approaches
adopt a self-training paradigm. For instance, SED [25] is
the first approach to introduce pseudo-label self-training via
self-entropy descent. A2SFOD [7] incorporates an adver-
sarial module into a mean teacher framework to align fea-
ture spaces between source-similar and source-dissimilar
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Figure 4. Overview of our method. Motivated by the observation that certain feature channels learned from the source domain negatively
impact cross-domain performance, we propose suppressing and pruning sensitive channels while adapting invariant ones. We introduce
sensitivity-guided channel pruning, which quantifies the importance of each feature channel based on its image-level and instance-level
sensitivity to domain discrepancies. We then apply a weighted sparsity loss to the learnable parameters, promoting the pruning of channels
with higher sensitivity based on the predefined threshold and ratio. To prevent the loss of potentially useful channels from early pruning,
we introduce a stochastic channel reactivation mechanism.

images. TTA-OD primarily addresses adaptation to the
static target domain in an offline setting, assuming that test
data follows an i.i.d. distribution with full access to the en-
tire test set. However, in practice, test data is often streamed
from continuously changing environments. Thus, we focus
on the online continual setting, which is more aligned with
real-world scenarios.
Continual Test-time Adaptive Object Detection (CTTA-
OD) [2, 4, 30, 31, 33, 35, 42] has gained increasing atten-
tion due to its practicality. DUA [30] continuously adapts
batch normalization statistics to refine feature representa-
tions. STFAR [4] follows a self-training paradigm, gen-
erating pseudo-labeled objects and incorporating feature
alignment regularization to improve the robustness of self-
training. ActMAD [31] focuses on fine-grained alignment
of activation statistics between test and training data. Most
CTTA-OD methods primarily focus on improving effective-
ness, while rarely exploring ways to enhance computational
efficiency, despite the task’s online requirement. In this pa-
per, we offer a new perspective on enhancing computational
efficiency from the model’s viewpoint. By suppressing and
pruning sensitive feature channels while adapting invariant
ones, we achieve both effectiveness and efficiency.
Network Pruning [6, 13, 19, 22, 24, 26, 29, 44] aims to
remove relatively ineffective subsets of parameters or struc-
tures from a neural network, improving efficiency while
minimizing the degradation in model performance. Prun-

ing methods are broadly categorized into unstructured and
structured types. Unstructured pruning removes individ-
ual weights, creating sparsity but often requiring special-
ized hardware for acceleration. Structured pruning [18], by
removing entire filters or layers, offers practical accelera-
tion without such dependencies. Channel pruning, a key
structured method, boosts computational efficiency by se-
lectively removing feature channels. Motivated by the suc-
cess of network pruning in reducing computational costs,
we are prompted to explore whether similar “ineffective
subsets” exist in source pre-trained model. Our exploratory
experiments reveal that certain sensitive feature channels in
the source pre-trained network negatively impact target do-
main performance. This finding underscores the feasibility
and potential of incorporating pruning to reduce computa-
tional overhead.

3. Methodology

In this section, we begin by introducing the task setup. We
then describe our sensitivity-guided channel suppression
and pruning. Following this, we present the optimization
objectives and the pruning process, analyzing their effects
on model computational efficiency. Finally, we introduce
the stochastic channel reactivation strategy, which enables
the model to reassess the utility of pruned channels. Fig 4
provides an overview of our method.



3.1. Problem Definition
Assume we have an object detector pre-trained on the
source domain Ds = {xs, ys}, where xs denotes the
source images and ys denotes the corresponding bounding
boxes and category labels. Our goal is to adapt the de-
tector to a sequence of continuously changing target do-
mains {D1

t , D
2
t , ..., D

N
t } using only the target data while

making predictions. The target domain at time period n is
denoted as Dn

t = {xn
t }, where xn

t denotes the target im-
ages at time period n and Pn

test ̸= Pn−1
test . Following prior

work [4, 31, 42], as the source domain is inaccessible dur-
ing adaptation, pre-computed source feature statistics, such
as the mean and variance, are available.

3.2. Network Pruning
To achieve channel-level pruning, we utilize the learnable
scaling factors in batch normalization (BN) layers to ef-
fectively identify and prune sensitive channels in the net-
work, following prior work [29]. This approach offers two
main advantages: First, the ResNet backbone is composed
of convolutional layers, BN layers, and activation functions.
The BN layers normalize the features extracted by the con-
volutional layers and apply learnable scaling and shifting
parameters to each channel:

ẑ =
zin − µB√
σ2
B + ϵ

, zout = γẑ + β, (1)

where zin and zout denote the input convolutional feature
and output, respectively. µB and σB are the mean and stan-
dard deviation values over B. The parameters γ and β,
which are trainable affine transformation factors, allow for
the linear transformation of the normalized activations back
to any scale. By adjusting the scaling factors γ in the BN
layers, we can directly control the magnitude of each fea-
ture channel, enabling effective suppression and pruning of
specific channels by reducing their scaling factors.

Furthermore, we apply L1 regularization as the sparsity
loss Lreg, pushing all scaling factors γi to approach zero for
channel suppression:

Lreg =

n∑
i=1

∥γi∥1, (2)

where n denotes the total number of BN layers considered.

3.3. Sensitivity-guided Channel Pruning
Evidently, the above sparsity regularization loss suppresses
all channels uniformly. However, based on our earlier anal-
ysis, we need to suppress domain-sensitive channels while
preserving and adapting domain-invariant ones. To achieve
this, we introduce a sensitivity-guided weighted sparsity
loss Lwreg, where the ωi reflects the domain sensitivity of

each channel γi:

Lwreg =

n∑
i=1

∥ωi · γi∥1, (3)

where · denotes element-wise multiplication. Specifi-
cally, omitting the subscript i for simplicity, ω consists of
two components: image-level channel sensitivity ωimg and
instance-level channel sensitivity ωins:

ω = ωimg + ωins. (4)

We compute ωimg to capture image-level channel variation
under domain shift as follows:

Simg =

∑N
n=1

∥∥Fn
t − Fs

∥∥
1

ND
∈ RC , (5)

wimg = C ×
Simg∑
Simg

, (6)

where Fn
t denotes the feature map extracted by the con-

volutional layer before the specified BN layer for the n-th
image in the target domain mini-batch, and Fs denotes the
pre-computed average feature map at the same layer posi-
tion from the source domain. Both Fn

t and Fs ∈ RC×D,
where N is the batch size, C is the number of channels, and
D is the product of the H and W of the feature map. To
stabilize training, we further normalize Simg to balance the
magnitude of variance across all channels, yielding wimg.

To capture fine-grained channel variation, we compute
the instance-level ωins by leveraging the Regions of Inter-
est (RoIs) predicted by the object detector on the target
domain data. Specifically, we focus on RoIs with a back-
ground confidence less than 0.5, indicating potential fore-
ground objects. For each selected RoI in the n-th image
of the target domain mini-batch, we extract the correspond-
ing feature map region from the convolutional feature map
Fn
t . For all obtained RoI features {fm

t }Mm=1, we utilize the
RoI-Alignment operation [17] to align the spatial size of all
instance-level features. We then calculate ωins as follows:

Sins =

∑M
m=1

∥∥fm
t − fs

∥∥
1

MDRoI
∈ RC , (7)

wins = C × Sins∑
Sins

, (8)

where M denote the number of selected RoIs within the
target domain mini-batch, and DRoI represent the spatial di-
mensions of the RoI features after alignment, fs ∈ RC×DRoI

refers to the pre-computed average RoI feature at the same
layer in the source domain, based on predicted RoIs and
their confidence scores. To ensure numerical stability, we
also apply channel-wise normalization, yielding wins.



Algorithm 1: Efficient CTTA-OD via pruning
Input: Target data xt, pruning threshold t, pruning

ratio threshold p, reactivation probability r
1 for each batch of target data xn

t do
2 Prune channels where the BN scaling factor

γ < t and define the computation graph;
3 Forward propagate for prediction;
4 Compute pruning ratio ρ according to Eq. (12);
5 if ρ < p then
6 Compute loss as in Eq. (3) and Eq. (11);
7 else
8 Compute loss as in Eq. (11);
9 Stochastic pruned channels reactivation with

r according to Eq. (14);

10 Backward propagate for updating;

3.4. Optimization
For the adaptation loss, we follow prior work [4, 31, 42]
and employ feature distribution alignment. Specifically, we
use both image-level and instance-level distribution align-
ment to minimize the KL divergence between source and
target feature distributions. Let µs and Σs denote the mean
and variance of the source features. To capture distribution
shifts in the test domain, we estimate the mean of the test
features, µt, using an exponentially moving average (EMA).
The image-level alignment loss is defined as the KL diver-
gence between the source and target distributions:

Limg = DKL (N (µs,Σs),N (µt,Σs)) . (9)

For instance-level alignment, we introduce an intra-class
feature alignment loss that minimizes the KL divergence be-
tween the source and target distributions for each category:

Lins =
∑
k

wk ·DKL
(
N (µk

s ,Σ
k
s ),N (µkt,Σk

s )
)
, (10)

where µk
s and Σk

s are the mean and variance for category
k in the source domain, and µk

t denotes the EMA-updated
mean for category k in the target domain. To further address
class imbalance, we dynamically adjust the weight wk for
each category based on its frequency in the target domain,
assigning higher weights to rare classes to enhance align-
ment quality. Overall, the adaptation loss is as follows:

Ladp = Limg + Lins. (11)

During adapting the continuously incoming target data,
our method dynamically prunes channels for all the consid-
ered BN layers before each optimization step, constructing
a sub-network for the current step. Specifically, with a pre-
defined pruning threshold t, for each scaling parameter γi

in the BN layers, if γi < t, the corresponding channel and
the associated filter in the preceding convolutional layer are
removed, defining the forward computation graph for the
current step. We define the pruning ratio ρ as the ratio of
pruned channels (those satisfying γi < t) to the total num-
ber of channels across considered BN layers:

ρ =

∑
i |{γi | γi < t}|∑

i |{γi}|
. (12)

During the backward optimization process, the loss function
Ltotal is defined based on the pruning ratio ρ as follows:

Ltotal =

{
Ladp + λLwreg, if ρ < p

Ladp, if ρ ≥ p
(13)

where λ is a balancing coefficient between the adaptation
loss and the pruning loss, p is the predefined pruning ratio
threshold. By jointly optimizing with the adaptation loss
and regulating the pruning ratio through the threshold p, we
effectively prevent over-pruning, balancing adaptability and
computational efficiency.
Discussion about efficiency. The ResNet backbone com-
prises stacked modules like BasicBlock and Bottleneck,
each with multiple Conv-BN-ReLU groupings. Except for
the down-sampling group in the residual branch and the first
group in the main branch, other convolution layers exhibit
both input and output sparsity. Positioned between two BN
layers, these layers support efficient pruning by removing
channels within each filter as well as eliminating entire fil-
ters. This setup results in a quadratic gain in computational
efficiency relative to the pruning ratio; for instance, retain-
ing only half of the channels in both adjacent BN layers
reduces the computational load of the intermediate convo-
lution layer to one-fourth of its original cost.

Our method reduces computational costs in both forward
and backward propagation. In forward propagation, fewer
nodes lead to reduced computational requirements. Back-
propagation costs primarily arise from gradient propagation
through the computation graph and the calculation of gradi-
ents for updatable parameters. By shortening gradient paths
and reducing node count, the simplified computation graph
lowers the computational burden of gradient propagation.
Furthermore, with fewer parameters involved, the cost of
computing their gradients is also minimized.

3.5. Stochastic Channel Reactivation
During optimization, some channels may be subject to early
pruning or mis-pruning due to initial scaling parameter val-
ues or the dynamic nature of the target domain. Once
a channel is pruned, it is excluded from subsequent for-
ward and backward passes, eliminating any chance to cor-
rect pruned channels. To this end, we propose a stochastic
channel reactivation strategy. Specifically, when the prun-
ing ratio ρ exceeds the predefined pruning ratio threshold



Table 1. Comparisons on Cityscapes → Cityscapes-C. We report continual test-time adaptive detection results along with FLOPs consump-
tion. ’Avg’ denotes the average results over all conditions across 10 rounds. ’Fwd’ indicates FLOPs during forward propagation, ’Bwd’
indicates FLOPs during backward propagation, and ’Total’ denotes the overall FLOPs.

Round 1 5 10
Avg

FLOPs

Condition Motion Snow Defocus Contrast Motion Snow Defocus Contrast Motion Snow Defocus Contrast Fwd Bwd Total

Direct Test 5.6 0.6 10.8 1.0 5.6 0.6 10.8 1.0 5.6 0.6 10.8 1.0 4.5 250.7 0.0 250.7
TeST [35] 6.7 1.9 11.8 2.2 6.9 1.1 12.1 2.1 6.2 1.6 11.6 2.4 5.6 1011.1 953.2 1964.2
DUA [30] 6.0 0.8 11.3 1.4 6.1 0.9 11.1 1.2 5.2 0.2 10.5 0.5 4.6 250.7 0.0 250.7
STFAR [4] 7.5 1.9 12.4 2.4 10.2 2.7 12.4 5.0 10.6 2.7 11.7 4.1 7.6 501.4 501.4 1002.9
ActMAD [31] 12.4 1.8 15.1 5.5 14.0 3.3 13.9 7.7 12.1 2.2 13.7 5.0 8.9 250.7 501.4 752.2
WHW [42] 13.3 2.8 16.5 6.7 14.7 3.5 14.7 9.9 13.6 3.1 13.7 6.6 9.1 253.0 255.2 508.2

Ours 13.2 2.6 17.1 7.4 15.6 4.6 15.1 10.3 15.2 4.8 15.1 10.4 11.4 224.6 225.0 449.6

p, we employ Bernoulli sampling to determine whether
each pruned channel should be reactivated. For each
pruned channel cji , a random variable bji is sampled from
a Bernoulli distribution:

bji ∼ Bernoulli(r), (14)

where r is a small reactivation probability. If bji = 1, the
channel’s BN scaling parameter γj

i is reset to its initial pre-
trained value from the source domain. This reactivation al-
lows the channel to rejoin the model’s forward and back-
ward passes, giving the model an opportunity to reassess the
utility of the reactivated channels, mitigating losses caused
by early pruning or mis-pruning. For clarity, the workflow
of our method is illustrated in Algorithm 1.

4. Experiments
4.1. Experimental Setup
Datasets. We conduct experiments in both autonomous
driving and UAV scenarios, including Cityscapes-C,
ACDC, and UAVDT-C. The Cityscapes dataset [8] consists
of 2,975 training images and 500 validation images with 8
categories of objects. We construct Cityscapes-C based on
benchmark robustness tasks [20], selecting four common
corruption types: snow, contrast, motion blur, and defocus
blur. These corruptions are applied to the validation set at
the maximum severity level 5, with each corruption type
forming an individual target domain consisting of 500 im-
ages. The ACDC dataset [34] shares the same class cate-
gories as Cityscapes but includes four different adverse vi-
sual conditions: fog, night, rain, and snow, with each condi-
tion containing 400 unlabeled images. The UAVDT dataset
[12] can be separated into three parts based on the weather
annotations: daylight, nighttime, and fog. We use 17.5k im-
ages from the daylight part as the source domain and extract
500 images each from the nighttime and fog parts as target
domains. Additionally, 500 images from the remaining day-
light images are selected and applied with motion blur and
defocus blur based on robustness benchmark [20]. Thus,

the UAVDT-C include nighttime, fog, motion blur, and de-
focus blur. For all experiment settings, we repeat 10 times
adaptation to target domain group to evaluate performance.

Implementation Details. We use Faster R-CNN [32] with
a ResNet18 [16] backbone pre-trained on ImageNet [9] as
the detector. During test-time adaptation, we adapt the
learnable scaling factors in the BN layers while freezing
all other parameters pre-trained on the source domain. The
batch size is set to 4, and the learning rate for the Adam
optimizer is set to 0.005. For hyper-parameter settings, the
pruning threshold t is set to 0.05, the pruning ratio threshold
p to 0.1, the reactivation probability r to 0.01, and the loss
balancing coefficient λ to 0.05. Following prior work [41],
we simulate the continual changing target domains via 10
rounds adaptation.
Evaluation Metrics. We use mAP@50 (%) and FLOPs
(G) as the evaluation metrics for detection performance and
computational efficiency. FLOPs during adaptation mainly
consist of two components: Forward propagation (Fwd) and
Backward propagation (Bwd). Fwd FLOPs can be calcu-
lated based on the model structure or using auxiliary tools.
In models where all parameters are learnable, Bwd typically
requires twice the FLOPs of Fwd [21], mainly consisting of
two parts: gradient propagation across layers and gradient
computation for the learnable parameters. Given that the
Fwd of fi+1 = fiW + b, the Bwd from the i+ 1th layer to
the ith layer, and the weight gradient are formulated as:

∂L
∂fi

=
∂L

∂fi+1
WT , (15)

∂L
∂W

= fT
i

∂L
∂fi+1

, (16)

where Eq. (15) describes gradient propagation across lay-
ers, which must be computed regardless of whether the pa-
rameters in the current layer are learnable, and Eq. (16)
describes the gradient computation for learnable parame-
ters, which is only necessary if the parameters of the current



Table 2. Comparisons on UAVDT → UAVDT-C. We report continual test-time adaptive detection results along with FLOPs consumption.

Round 1 5 10
Avg

FLOPs

Condition Fog Defocus Motion Night Fog Defocus Motion Night Fog Defocus Motion Night Fwd Bwd Total

Direct Test 4.8 2.5 6.8 11.4 4.8 2.5 6.8 11.4 4.8 2.5 6.8 11.4 6.4 250.7 0.0 250.7
TeST [35] 6.4 4.5 10.5 12.0 8.2 6.9 10.2 12.1 8.8 6.6 10.5 12.2 9.2 1011.1 953.2 1964.2
DUA [30] 5.2 2.8 7.1 11.7 5.0 2.8 6.9 11.8 3.6 1.1 5.5 10.3 6.1 250.7 0.0 250.7
STFAR [4] 6.9 5.7 11.3 12.3 9.5 6.9 10.5 12.0 9.0 6.6 10.8 12.2 9.6 501.4 501.4 1002.9
ActMAD [31] 9.5 6.4 15.3 15.0 13.2 9.1 13.4 14.0 13.1 7.5 12.3 13.9 10.8 250.7 501.4 752.2
WHW [42] 9.9 7.8 17.0 15.6 16.1 10.1 14.6 14.9 13.9 7.1 13.6 13.4 12.0 253.0 255.2 508.2

Ours 10.2 8.9 17.2 16.9 16.6 11.1 16.0 15.4 18.0 10.1 16.3 15.5 14.3 221.0 221.4 442.4

Table 3. Comparisons on Cityscapes → ACDC. We report continual test-time adaptive detection results along with FLOPs consumption.

Round 1 5 10
Avg

FLOPs

Condition Snow Rain Night Fog Snow Rain Night Fog Snow Rain Night Fog Fwd Bwd Total

Direct Test 21.8 22.2 9.8 34.4 21.8 22.2 9.8 34.4 21.8 22.2 9.8 34.4 22.0 250.7 0 250.7
TeST [35] 22.0 22.1 9.6 34.4 21.8 22.3 9.6 34.1 22.0 22.2 9.5 34.4 22.1 1011.1 953.2 1964.2
DUA [30] 20.9 21.5 9.1 33.8 21.1 21.3 9.0 33.7 20.4 20.8 8.4 33.1 21.1 250.7 0 250.7
STFAR [4] 21.9 22.5 9.5 34.7 21.7 22.2 9.5 34.2 21.6 22.8 9.6 34.7 22.1 501.4 501.4 1002.9
ActMAD [31] 22.8 22.6 10.7 33.5 23.4 22.7 11.5 34.5 22.2 22.9 10.9 34.9 23.3 250.7 501.4 752.2
WHW [42] 23.2 22.6 11.2 34.7 24.0 24.1 12.4 34.2 24.0 23.6 12.7 34.7 23.6 253.0 255.2 508.2

Ours 23.4 22.6 11.7 34.7 24.7 24.1 13.0 35.1 24.5 24.1 12.9 35.0 24.2 226.2 226.6 452.8

Table 4. Ablation analysis of the framework components, where
’SCR‘ represents Stochastic Channel Reactivation.

Ladp Lreg ωimg ωins SCR Avg ∆FLOPs↓
4.5 0.0%

✓ 10.9 0.0%
✓ ✓ 8.8 10.2%
✓ ✓ ✓ 10.5 10.5%
✓ ✓ ✓ 9.9 10.9%
✓ ✓ ✓ ✓ 11.2 10.7%
✓ ✓ ✓ ✓ ✓ 11.4 10.4%

layer are learnable. Therefore, the FLOPs for Fwd can be
calculated based on the model’s computation graph, and the
FLOPs for Bwd can be calculated based on the FLOPs for
Fwd and the distribution of learnable parameters, enabling
calculation of the total FLOPs. FLOPs computation for con-
volutional layers is similar, so we skip this discussion.

4.2. Benchmark Results
We compare our approach with the baseline (directly test-
ing the source model on target domains) and five competing
CTTA-OD methods [4, 30, 31, 35, 42] across three bench-
marks. For open-source methods, we strictly follow the pro-
vided hyper-parameters, and for others, we replicate based
on paper details. The results are shown in Tables 1, 2, 3.
Our method achieves an increase of 2.3, 2.3, and 0.6 in ten-
round average mAP over the recent SOTA method, while

reducing FLOPs by 11.6%, 12.9%, and 10.9%, respec-
tively. Compared to the baseline, our method boosts average
mAP by 6.9, 7.9, and 2.2 with the lowest additional FLOPs
among all CTTA-OD methods. In DUA, multi-round adap-
tation leads to severe disruption of BN layer statistics by
domain shifts, which does not contribute positively to tar-
get domain performance. TeST and STFAR, based on the
mean teacher framework, achieve stable improvements dur-
ing adaptation but incur substantial additional computa-
tion due to the inference and updates required for a larger
set of parameters. Compared to alignment-based methods
such as ActMAD and WHW, our approach prunes sensitive
channels, reducing adaptation difficulty. Additionally, the
smaller number of optimized parameters allows for faster
adaptation to changing target domains and minimizes error
accumulation, resulting in the highest performance gains.

4.3. Ablation Analysis

Framework Components. We conduct an ablation study
to verify the effectiveness of each component in our pro-
posed framework, as detailed in Table 4. Indiscriminate
pruning leads to notable performance degradation, whereas
channel sensitivity guidance at both image and instance lev-
els enables the model to make informed pruning decisions,
thereby preserving performance. Stochastic channel reacti-
vation provides additional performance gain, albeit with a
minor increase in the FLOPs consumption.
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Figure 5. Ablation analysis of three hyper-parameters: (a) Pruning threshold t, (b) Pruning ratio threshold p, and (c) Balancing coefficient
λ. We provide the pruned channel ratio for each round, with the average mAP for each setting annotated on the line plot.
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Figure 6. Visualization analysis of the effectiveness of pruning sensitive channels. (a) mAP change curves during test-time adaptation for
our method versus the adapt-all-channels approach, with FLOPs reduction for our method. (b) T-SNE visualization of invariant channel
distribution changes retained by our method in the final adaptation round across four target domains. (c) T-SNE visualization of feature
channel distribution when adapting all channels in the final round, with sensitive and invariant channels color-coded based on our mask.

Hyper-parameters. We investigate how varying the setting
of pruning threshold t, pruning ratio threshold p, and bal-
ancing coefficient λ. affects the pruning process and adap-
tation performance, as shown in Fig 5. Setting a high prun-
ing threshold risks early pruning, removing useful chan-
nels and causing performance loss, while a low threshold
stabilizes performance but slows pruning process, limiting
FLOPs reduction. A high pruning ratio threshold may lead
to over-pruning, causing substantial performance degrada-
tion. A larger balancing coefficient between losses prior-
itizes pruning loss optimization, accelerating the pruning
process; however, an aggressive pruning strategy may also
compromise performance.

4.4. Visualization Analysis
To validate the effectiveness of pruning sensitive channels,
we conduct visualization analysis. Fig 6 (a) compares mAP
change curves during test-time adaptation between adapting
all channels and our method, which focuses only on invari-
ant channels. Pruning sensitive channels reduces adaptation
difficulty, enabling faster learning of target domain distribu-
tions in early rounds and boosting average mAP. It also cuts
computational overhead, while adapting all channels does
not decrease FLOPs. Fig 6 (b) visualizes the distribution

changes of the invariant channels retained by our method
through T-SNE in the final round of continual adaptation
across four target domains. The mixed distribution across
these domains demonstrates the invariance of the feature
channels. Fig 6 (c) presents the feature channel distribu-
tion when adapting all channels during the final round, with
sensitive and invariant channels differentiated by color us-
ing our channel mask. Sensitive channels show scattered
distributions under changing target domains, while invari-
ant channels remain more stable, validating the necessity of
pruning sensitive channels.

5. Conclusion and Future Work

In this paper, we introduce an efficient CTTA-OD frame-
work based on sensitivity-guided pruning, offering a new
perspective on enhancing computational efficiency from a
model structure standpoint. For future work, one promising
direction is to develop a more subtle pruning strategy, as
focusing solely on general invariant features may not fully
exploit the model’s potential. Furthermore, extending our
approach to versatile detectors such as YOLO [11], DETR
[3], or models without BN layers will also be crucial for
broader application.
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